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In this section, we introduce the simplest applications of generalized unitarity for loop ampli-

tudes.

Generalized unitarity is an idea to reconstruct loop amplitude integrand from tree amplitude.

It originates from the research of Zvi Bern, Lance Dixon and David Kosower in 1990s. Since tree

amplitude is simple (on-shell and ghost-free), soon this method became a very popular tool for

modern quantum field theory. Different from the original unitarity in QFT (optical theorem), with

generalized unitarity we can apply any cuts to an loop amplitude to reconstruct various terms in

the integrand.

Note that generalized unitarity does not directly produce the integrated loop amplitudes. The

loop integral integration would be introduced in the following sections.

I. OSSOLA-PAPADOPOULOS-PITTAU INTEGRAND REDUCTION

Ossola, Papadopoulos and Pittau (OPP) integrand reduction [1, 2] is a modern tool for analyzing

the loop integrand of an one-loop amplitude. By partial fraction, it decompose the one-loop

integrand to a few simple terms. The basic idea is that for an one-loop amplitude,∫
dDl

N

D1 . . . Dk
(1)

We mathematically decompose the numerator as,

N = ∆ + f1D1 + f2D2 + . . . fkDk (2)

Here ∆ should be the “simplest” and “independent” of Di’s. The rigorous meaning of “simplest”

and “independent” would be introduced in the future. Note that fiDi cancels one denominator

and only contributes to the sub-diagrams.

A. Maximal cut example

We start with the 4D toy-version of the OPP integrand reduction. For simple D = 4 cases, we

only need to begin with the box diagram. For instance, consider D = 4 four-point massless box,

D1 = l2, D2 = (l − p1)2, D3 = (l − p1 − p2)2, D4 = (l + p4)
2. (3)

The Mandelstam variables are s = (p1 + p2)
2 and t = (p1 + p4)

2. It is useful to re-parameterize

the loop momentum l instead of using its Lorentz components. There are several parametrization

methods: (1) van Neerven-Vermaseren parameterization (2) spinor-helicity parameterization.
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To make a 4D basis, we introduce an auxiliary vector ωµ ≡ 2i
s εµνρσp

ν
1p
ρ
2p
σ
4 . Explicitly,

ω =
s+ t

s

〈43〉
〈13〉

14̃ +
〈13〉
〈43〉

41̃ (4)

with

ω2 = − t(s+ t)

s
. (5)

Then the basis {e1, e2 . . . e4} ≡ {p1, p2, p4, ω}. The Gram matrix of this basis is,

G =


0 s

2
t
2 0

s
2 0 −s−t

2 0

t
2
−s−t
2 0 0

0 0 0 − t(s+t)
s

 , Gij = ei · ej . (6)

Note that for any well-defined basis, Gram matrix should be non-degenerate. For any 4D momen-

tum p, define van Neerven-Vermaseren variables as,

xi(p) ≡ p · ei, i = 1, . . . , 4 . (7)

Then for any two 4D momenta, a scalar product translates to van Neerven-Vermaseren form, by

linear algebra

p1 · p2 = x(p1)
T (G−1)x(p2) , (8)

where the bold x(p) denotes the column 4-vector, (x1, x2, x3, x4)
T . Back to our one-loop box, define

xi ≡ xi(l). Hence a Lorentz-invariant numerator Nbox has the form,

Nbox =
∑
m1

∑
m2

∑
m3

∑
m4

cm1m2m3m4x
m1
1 xm2

2 xm3
3 xm4

4 , (9)

For a renormalizable theory, there is a bound on the sum, m1 + m2 + m3 + m4 ≤ 4. The goal in

integrand reduction is to expand

Nbox = ∆box + h1D1 + . . . h4D4 , (10)

such that the remainder polynomial ∆box is as simple as possible.

The simplest ∆box can be obtained by a direct analysis. Note that

x1 = l · p1 =
1

2
(D1 −D2),

x2 = l · p2 =
1

2
(D2 −D3) +

s

2
,

x3 = l · p4 =
1

2
(D4 −D1), (11)
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hence x1, x2 and x3 can be written as combinations of Di’s. A scalar product which equals

combinations of denominators and constants is called a reducible scalar product (RSP). In this

cases, x1, x2, x3 are RSPs. The remainder ∆box shall not depend on RSPs, hence,

∆box =
∑
m4

cm4x
m4
4 . (12)

x4 is called a irreducible scalar product (ISP). Furthermore, using the expansion of l2 and (11),

D1 = l21 =
1

4st(s+ t)

(
− 4s2x24 + s2t2 + 4D1s

2t− 2D2s
2t− 2D4s

2t+D2
2s

2 +D2
4s

2

− 2D2D4s
2 + 2D1st

2 − 2D3st
2 + 2D1D2st− 4D1D3st+ 2D2D3st+ 2D1D4st

− 4D2D4st+ 2D3D4st+D2
1t

2 +D2
3t

2 − 2D1D3t
2
)
, (13)

which means

x24 =
t2

4
+O(Di). (14)

Hence quadratic and higher-degree monomials in x4 should be removed from the box integrand,

and

∆box = cbox,0 + cbox,1(l · ω). (15)

This is the integrand basis for the 4D box, which contains only 2 terms. Note that by Lorentz

symmetry, ∫
d4l

l · ω
D1D2D3D4

= 0, (16)

for any value of D. So c1 should not appear in the final expression of scattering amplitude. We

call such a term a spurious term. But it is important for integrand reduction, as we will see soon.

II. GENERALIZED UNITARITY FOR THE MAXIMAL CUT COEFFICIENTS

The power of OPP integrand reduction is that the coefficients in the OPP basis can be directly

fitted from tree amplitudes.

A. Gluon amplitude 1−2−3+4+

For example, let us consider the color-order one-loop Yang-Mills amplitude A(1)(1−, 2−, 3+, 4+).

We consider the quadruple cut (4-cut)

D1 = D2 = D3 = D4 = 0 . (17)
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This is a generalized unitarity cut, different from the optical theorem. We expect that with the

quadruple cut, all propagators become on-shell and we have a product of four tree amplitudes

(summed over all internal physical states):

N |4−cut =
∑

h1,h2,h3,h4=±
A1(−l∗,−h1 , p1, (l∗ − p1)h2)A2((p1 − l∗)−h2 , p2, (l∗ − p1 − p2)h3)

×A3((p1 + p2 − l∗)−h3 , p3, (l∗ + p4)
h4)A4((−l∗ − p4)−h4 , p4, lh1) (18)

where l∗ is a particular value such that

l∗2 = 0, (l∗ − p1)2 = 0, (l∗ − p1 − p2)2 = 0, (l∗ + p4)
2 = 0. (19)

Note that the (19) may have several solutions. For this quadruple cut case, we can parameterize

the loop momenta as

l = a1p1 + a2p4 + a3
〈43〉
〈13〉

14̃ + a4
〈13〉
〈43〉

41̃ (20)

It is easy to see that there are two solutions

(I): a1 = 0, a2 = 0, a3 = −1, a4 = 0 (21)

(II): a1 = 0, a2 = 0, a3 = 0, a4 = s/(s+ t) (22)

Note that the second term in the box OPP basis, l · ω, has the values at the two solutions

(I): l · ω → t

2
(23)

(II): l · ω → − t
2

(24)

The correspondence between the two OPP coefficients and the two solutions can be illustrated

by the following examples.

B. A(1)(1−2−3+4+)

This is a easy case for generalized unitarity.

• For the solution (I), note that with this solution l∗, l∗ − p1, l∗ − p1 − p2, l∗ + p4 are all null

vectors. Therefore, we split them into spinors tables,

l∗ x1 4̃

l∗ − p1 1 x4̃− 1̃

l∗ − p1 − p2 y1− 2 2̃

l∗ + p4 x1 + 4 4̃

(25)
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From the spinor table, we see that A1, A3 must be MHV, and A2, A4 must be MHV. Here

x = −〈43〉
〈13〉

, y = − [14]

[24]
(26)

Furthermore, we can see that there is only one internal helicity configuration for this solution.

We get ∑
helicities

A1A2A3A4|solution (I) = istA(1−2−3+4+) . (27)

• For the solution (II), we see the spinor table is

l∗ x4 1̃

l∗ − p1 x4− 1 1̃

l∗ − p1 − p2 2 y1̃− 2̃

l∗ + p4 4 x1̃ + 4̃

(28)

From the spinor table, we see that A1, A3 must be MHV, and A2, A4 must be MHV. Here

x = − s〈13〉
(s+ t)〈34〉

, y = − t〈13〉
(s+ t)〈23〉

(29)

Furthermore, we can see that there is only one internal helicity configuration for this solution.

We get ∑
helicities

A1A2A3A4|solution (II) = istA(1−2−3+4+) . (30)

Combine the two cases together, we see that

c−−++
box,0 = istA(1−2−3+4+), c−−++

box,1 = 0 (31)

C. Gluon amplitude 1−2+3−4+

The previous example is somehow deceptive in the sense that the two cuts gives the same tree

product, via general unitarity. In the one-loop gluon amplitude 1−2+3−4+ example, we see that

the feature is absent.

• For the solution (I), again we split the loop momenta into spinors tables. It is easy to see

that there is only one helicity configuration and,

d1 ≡
∑

helicities

A1A2A3A4|solution (I) = istA(1−2+3−4+) . (32)
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• For the solution (II), we see that there are two helicity configurations and the sum is that

d2 ≡
∑

helicities

A1A2A3A4|solution (II) = ist

(
s4

(s+ t)4
+

t4

(s+ t)4

)
A(1−2+3−4+) . (33)

The OPP coefficients can be determined as,

cbox,0 + cbox,1
t

2
= d1 (34)

cbox,0 − cbox,1
t

2
= d2 (35)

Then,

c−+−+box,0 =
1

2

(
d1 + d2

)
= i

st(s2 + st+ t2)2

(s+ t)4
A(1−2+3−4+)

c−+−+box,1 =
1

t

(
d1 − d2

)
= i

2s2t(2s2 + 3st+ 2t2)

(s+ t)4
A(1−2+3−4+) (36)

Note that in the N = 4 super-Yang-Mills theory, with the contribution from gluino and scalars,

the two cuts both give the same tree products istA(1−2+3−4+). Therefore

cSYM,−+−+
box,0 = istA(1−2+3−4+)

cSYM,−+−+
box,1 = 0 (37)

So we see that the N = 4 integrand is significantly simpler than the corresponding QCD case.

D. Gluon amplitude A(1)(1−2−3+4+5+)

We consider the five-point one-loop amplitude in Yang-Mills theory, A(1)(1−2−3+4+5+).

First question, can we use the simple but less rigorous 4 dimensional OPP reduction and 4

dimensional generalized unitarity? The answer is “yes”, in some sense.

Note that in principle there is a pentagon-box diagram for this one-loop amplitude. The pen-

tagon part cannot be determined by the 4-dimensional generalized unitarity. (There are four

components for the loop momenta but five cut equations.) However, in the rigorous D dimensional

unitarity approach, we will see that the “genuine” pentagon part provides only a vanishing term

(in the high order of ε). We postpone the D-dimensional discussion for a while and then use the 4

dimensional generalized unitarity method to determine the box coefficient.

There would be five different boxes for this amplitude. Here we determine the box coefficient

for a particular box with the external states 1 and 2 combined together, box12;345.
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The propagators on the quadruple cut are

D1 = l2, D3 = (l − p1 − p2)2, D4 = (l − p1 − p2 − p3)2, D5 = (l + p5)
2 (38)

The first solution has the spinor helicity table

l∗ 5 x4̃− 5̃

l∗ − p1 − p2 3 y4̃ + 3̃

l∗ − p1 − p2 − p3 4 + 5x 4̃

l∗ + p4 5 x4̃

(39)

where x = −〈43〉/〈53〉 and y = 〈45〉/〈35〉. There is only one helicity configuration and the tree

product gives

d1 =
∑

helicities

A1A2A3A4|solution (I) = is34s45A(1−2−3+4+5+) . (40)

The second solution provides the zero tree product

d2 =
∑

helicities

A1A2A3A4|solution (II) = 0. (41)

Combine them together we find that

c−−+++
box,12;345,0 =

is34s45
2

A(1−2−3+4+5+) (42)

as well as a nonzero spurious coefficient.

III. NON-MAXIMAL CUTS

For the OPP-like approach, after determine the top integral coefficient from the maximal cuts,

we need to determine the daughter integral coefficients from the non-maximal cuts.

Usually, it takes more efforts to apply non-maximal cuts and the computation is more involved.

A. Triple cuts

For the one-loop box diagram with propagators D1, D2, D3 and D4, there are four daughter

diagram with three propagators each. Here we focus on the∫
dDl

N

D1D2D4
(43)
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triangle diagram. Again we first use the OPP reduction to determine the genuine numerators

contributing to the triangle diagram. In the 4D OPP approach, we would like to split

N = ∆tri + f1D1 + f2D2 + f4D4 (44)

where fi’s are polynomials in the loop momentum. The goal is to move “as many as possible”

terms in N to f1D1 + f2D2 + f4D4, in order to get a “simplest” ∆tri.

Again, we use van Neerven-Vermaseren parameterization. Define a vector basis p1, p4, v1, v2

with

v1 =
〈43〉
〈13〉

14̃ (45)

v2 =
〈13〉
〈43〉

41̃ (46)

Note that p1 · vi = 0 and p4 · vi = 0. We define the van Neerven-Vermaseren variables,

x1 = l · p1, x2 = l · p4, x3 = l · v1, x4 = l · v2 (47)

Then the propagators read

D1 =
4(x1x2 − x3x4)

t

D2 =
2(−tx1 + 2x1x2 − 2x3x4)

t

D3 =
2(tx2 + 2x1x2 − 2x3x4)

t

Then it is easy to see that x1 = (D1 −D2)/2 and x2 = (D3 −D1)/2. Furthermore, x3x4 is a also

a polynomial of Di’s. Hence, we have the OPP basis for this triangle

∆tri = ctri,0 + ctri,1x3 + ctri,2x
2
3 + ctri,3x

3
3 + ctri,4x4 + ctri,5x

2
4 + ctri,6x

3
4 . (48)

where for the maximal power we used the renormalization constraint.

Note that by the Passarino-Veltman reduction, ctri,j , j = 1, . . . 6 are all spurious.

The triple cut is to set D1 = D2 = D4 = 0. We use the previous spinor helicity formalism for

l,

l = a1p1 + a2p4 + a3
〈43〉
〈13〉

14̃ + a4
〈13〉
〈43〉

41̃ (49)

Then there are two triple cut solution branches,

(I): a1 = 0, a2 = 0, a4 = 0 (50)

(II): a1 = 0, a2 = 0, a3 = 0 (51)
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Note that each solution is one-dimensional. The solution (I) has a free parameter a3 and the

solution (II) has a free parameter a4.

The OPP triangle basis on the two solution reads

∆tri|solution-I = ctri,0 −
tctri,4

2
a3 +

t2ctri,5
4

a23 −
t3ctri,6

8
a33

∆tri|solution-II = ctri,0 −
tctri,1

2
a4 +

t2ctri,2
4

a24 −
t3ctri,3

8
a34 (52)

Note that they are all polynomials in the free parameters.

Generalized unitarity for the triple cut reads,

N |3−cut +
∆box

D3
|3−cut = (−i)3×∑

h1,h2,h3=±
A1(−l∗,−h1 , p1, (l∗ − p1)h2)A2((p1 − l∗)−h2 , p2, p3, (l∗ + p4)

h3)×A3((−l∗ − p4)−h3 , p4, lh1)

(53)

Note that the triple cut also detects the box information. Hence the left side must induce ∆box/D3.

Since ∆box is already calculated, we just need to subtract this term (OPP subtraction).

For the solution (I), we split the loop momenta in a spinors table,

l x1 4̃

l − p1 1 x4̃− 1̃

l + p4 x1 + 4 4̃

(54)

From the spinor table, we see that A1 must be MHV, and A3 must be MHV. Here x = a3〈43〉/〈13〉.

For the solution (II), we see the spinor table is

l y4 1̃

l − p1 y4− 1 1̃

l + p4 4 y1̃ + 4̃

(55)

From the spinor table, we see that A1, must be MHV, and A3 must be MHV. Here y = a4〈13〉/〈43〉.

B. Gluon amplitude A(1)(1−2−3+4+), triple cut

Recalled that

c−−++
box,0 = istA(1−2−3+4+), c−−++

box,1 = 0 (56)
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For the solution (II), there is only one helicity configuration.

(−i)3 ×
∑

helicities

A1A2A4|solution (I) =
it

a3 + 1
A(1−2−3+4+) . (57)

On the other hand,

∆box

D3
|solution (I) =

it

a3 + 1
A(1−2−3+4+) . (58)

After the OPP subtraction, we determine that

ctri,0 = ctri,4 = ctri,5 = ctri,6 = 0 . (59)

For the solution (II), there are two helicity configurations

(−i)3 ×
∑

helicities

A1A2A4|solution (II)

=

(
− it(a4s+ a4t− s)3

s3
− ia4

4t(s+ t)4

s3(a4s+ a4t− s)

)
A(1−2−3+4+) . (60)

This expression is not a polynomial in a4 and does not fit into the OPP basis. However, after the

OPP subtraction, it is,

(−i)3 ×
∑

helicities

A1A2A4|solution (II) −
∆box

D3
|solution (I)

=

(
8i(s+ t)

s
x3 +

8i(s+ t)2

s2t
x23 +

16i(s+ t)3

s3t2
x33

)
A(1−2−3+4+) (61)

So we determine that

ctri,0 = 0, ctri,1 =
8i(s+ t)

s
A(1−2−3+4+),

ctri,2 =
8i(s+ t)2

s2t
A(1−2−3+4+) ctri,3 =

16i(s+ t)3

s3t2
A(1−2−3+4+) . (62)

Note that the two solutions are consistent in the sense that ctri,0’s values agree. All non-zero terms

are spurious, so they do not contribute to the physical scattering amplitude.

C. Gluon amplitude A(1)(1−2+3−4+), triple cut

Recalled that

c−−++
box,0 = i

st(s2 + st+ t2)2

(s+ t)4
A(1−2+3−4+), c−−++

box,1 = 2i
s2t(2s2 + 3st+ 2t2)

(s+ t)4
A(1−2+3−4+) (63)

For the solution (II), there is only one helicity configuration.

(−i)3 ×
∑

helicities

A1A2A4|solution (I) =
it

a3 + 1
A(1−2−3+4+) . (64)
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But the messy terms from the top diagram kicked in,

∆box

D3
|solution (I) =

it
(
−2a3s

3t− 3a3s
2t2 − 2a3st

3 + s4 + 2s3t+ 3s2t2 + 2st3 + t4
)

(a3 + 1) (s+ t)4
A(1−2+3−4+) .

(65)

After the OPP subtraction, we determine that

ctri,0 =
ist2

(
2s2 + 3st+ 2t2

)
(s+ t)4

A(1−2+3−4+), ctri,4 = ctri,5 = ctri,6 = 0 . (66)

For the solution (II), there are two helicity configurations. After the OPP subtraction, again

we determine that

ctri,0 =
ist2

(
2s2 + 3st+ 2t2

)
(s+ t)4

A(1−2+3−4+) (67)

as well as some nonzero spurious coefficients.

We comment that for the N = 4 super-Yang-Mills theory, the triangle, bubble coefficients must

be zero.

IV. D-DIMENSIONAL OPP REDUCTION

Here we briefly review the D-dimensional OPP reduction. This is a rigorous treatment of the

integrand reduction and generalized unitarity. However, after the full computation, we see that

for the one-loop case, the rigorous D-dimensional unitarity just provides the rational terms in the

amplitude.

For instance, consider D-dimensional four-point massless box,

D1 = l2, D2 = (l − p1)2, D3 = (l − p1 − p2)2, D4 = (l + p4)
2. (68)

It is useful to use the van Neerven-Vermaseren parametrization.

x1 = l · p1, x2 = l · p2, x3 = l · p4, x4 = l · ω (69)

We further decompose the D-dimension l to the 4D part and the D − 4 part,

l = l[4] + l⊥ (70)

We define (l⊥)2 ≡ −µ11. It is easy to see that µ11 appears only linearly in Di’s.

Di = fi(x1, x2, x3, x4; s, t)− µ11 (71)
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It is clearly that x1, x2 and x3 are reducible scalar products (RSPs). µ11 and x4 are ISPs. Fur-

thermore from the OPP process or the Groebner basis computation, we see that

st2 + µ11(−4st− 4t2)− 4sx24 = Combination of Di’s (72)

Hence we can trade x24 for mu11. Considering the renormalization condition, the OPP basis is then

δbox = cbox,0 + cbox,1µ11 + cbox,2µ
2
11 + cbox,3x4 + cbox,4x4µ11 (73)

There are five coefficients to be determined.

It is clear that cbox,3 and cbox,4 are spurious coefficients. From the explicit computation of the

integrals [3], we see that in the limit ε→ 0

Ibox[1] ∼ O(ε−2) (74)

Ibox[µ11] ∼ O(ε) (75)

Ibox[µ211] ∼ −
1

6
+O(ε) (76)

So we see that in the epsilon expansion Ibox[µ11] provides no contribution to the one-loop amplitude.

The Ibox[µ211] is finite and simply a rational number in the ε expansion. Usually, cbox,4 is finite in

the ε expansion which means that cbox,4 only contributes to so-called rational term.

All the coefficient cbox,i, i = 0, . . . 4 can be determined by D-dimensional tree amplitudes [4].

However, there is a further shortcut [3].

A(1),gluon = A(1),N=4 − 4A(1),N=1 +A(1),scalar (77)

where the scalar is the color-adjoint scalar particle. The N = 4 and N = 1 amplitudes are cut-

constructible and no D-dimensional generalized unitarity is needed. For A(1),scalar we combine the

D dimensional tree amplitudes to get the rational terms.

For the automatic D-dimensional one-loop amplitudes computations, check the Softwares

GoSam, NGluon, CutTools [2, 5, 6].
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